
Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

77

Basic Game Logic

3 Basic Game Logic
Introduction

Computer game is in fact a piece of software, which has to abide to the logic of computer in dealing
with facts, making decisions, and performing tasks. In this chapter we are going to learn a number of
common game mechanics and how to program them. We have already dealt with a couple of mechanics
which are moving and jumping.

After completing this chapter, you are expected to:

 - Program simple shooting.
 - Program collectables such as coins and other items
 - Program objects holding and releasing.
 - Program triggers and usable objects.

3.1 Shooting

Shooting mechanic is very common in 2D and 3D games. In this section we are going to discuss a
simple projectile that moves forward with constant speed. This means that we are not going to discuss
any external effects on the projectile such as gravity. Additionally, high speed projectiles such as rifle
and shotgun bullets are not going to be covered, since they need a different technique that we are going
to discuss later on.

Let’s begin with a simple game that is similar to the classic game Space Invaders. We are going to build
a simple space shuttle like in Illustration 30, and then we should add a script to control this shuttle.
We are going to be able to move the shuttle in the four directions and shoot two different types of
projectiles: bullets and rockets, which have similarities and dissimilarities. Since we are dealing with a
top-down view, movement of the shuttle is going to be on the x and z axes. This time we should change
the perspective of the camera to orthogonal, so the whole scene gets rendered in two dimensions, so
the cubes look like rectangles.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

78

Basic Game Logic

 Illustration 30: The space shuttle to be used for shooting projectiles

In this section we are going to learn a new concept in Unity, which is the prefab. The idea of the prefab
is based on creating a game object and add all of the necessary components, scripts, textures, and so on
to that object. After that, we store this object as a prefab. This prefab can be used to generate unlimited
number of copies of the original object, and we are able to modify a large number of objects from one
place by modifying the prefab used to create them. Prefabs are going to be useful for making bullets
and rockets, since shooting requires generating unspecified number of bullets and rockets during
game execution.

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

79

Basic Game Logic

There is going to be a number of scripts in this scene, therefore I am going to reveal them in a specific
order that delays the scripts which have dependencies. So I am going to begin with independent scripts
that do not need to reference other scripts. Therefore I am going to leave the shuttle for a while to discuss
the targets that our shuttle will be shooting. We are going to use prefabs to create targets, since we are
going to have a relatively large number of targets in the scene, and it would be great to be able to handle
these objects from single place.

To create the target prefab, add a cube to the scene. We are going to add the script Target to this cube,
which has only one variable called hit. hit is a boolean value that determines whether the target has
already been hit or not. The script Target is shown in Listing 15.

1. using UnityEngine;

2. using System.Collections;

3.

4. public class Target : MonoBehaviour {

5.

6. //The bullet sets this value to true when it hits the target

7.	 public	bool	hit	=	false;
8.

9.	 //Set	this	flag	to	true	after	calling	destroy
10.	 bool	destroyed	=	false;
11.

12. void Start () {

13.

14. }

15.

16. void Update () {

17. if(hit){

18. //The bullet has hit the target. Play destruction

19. //animation, which is rotation and size reduction

20. transform.Rotate(0, 720 * Time.deltaTime, 0);

21.	 transform.localScale	-=	Vector3.one	*	Time.deltaTime;
22.

23. //If we have not called Destroy() yet, call it now

24. if(!destroyed){

25. //Delay destruction for one second so the player

26. //can see the animation

27.	 		 Destroy(gameObject,	1);
28.	 		 //Set	the	destruction	flag	to	prevent	multiple
29. //Destroy() calls

30.	 		 destroyed	=	true;
31. }

32. }

33. }

34. }

Listing 15: Script for targets to be shot

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

80

Basic Game Logic

This script checks the value of hit, and eventually destroys the object if the value is true. Since there are
no statement in this code that changes the value of hit, the object maintains its state until another script
modifies this value. We are going to see shortly how does the bullet check for a collision between itself
and the object, and change the value of hit if such collision exists. The script also adds a sort of animation
to the object, by rotating it and reducing its size with time once the object is hit. This animation makes
the target looks like if it is falling down.

Rotation is performed using the function transform.Rotate(), which we have dealt with in many cases
before. On the other hand, reducing the object size is achieved by subtracting a small amount from the
object scale. This amount is equal to a vector that has components with values equal to Time.deltaTime,
which makes size reduction in a speed of one meter per second; so the object disappears after one second
because of zero scale. Therefore, we call Destroy() in line 27 and pass to it the object we want to destroy
(in this case it is the same target object, which can be achieved through the variable gameObject). In
addition to the object, we also pass to Destroy() the time it should wait before performing the destruction.
In this case the time is one second.

What we mean by destroying the object in this context is removing the object completely from the scene,
and this can be observed by disappearance of the object from the hierarchy. To avoid calling Destroy()
more than one time, we used the variable destroyed as a flag for calling that function. We need destroyed
in this case because we have delayed the destruction to show the animation. This delay will cause Update()
to be called several times during next second before the object is actually destroyed. During this second,
we want to repeatedly call falling animation, but we want to call Destroy() only once.

We well now add another script to the target game object. The job of this script is to move the target
so it does not stay still. This movement depends on time only and not on the player input like we have
done several times before. The reason is obvious: the player do not control the targets, they move by
themselves. The script is going to move the target in a specific direction with a constant speed. Listing
16 shows AutoMover script, which moves the object over the time in the direction specified by the speed
vector. When the object leaves the field of view of the camera from one side, it should be repositioned
in the opposite side. This movement is known as wrapping, and is common in many games, including
the famous classic game Pac-Man. Listing 17 shows Wrapper script, which rotates the object around the
scene based on its position on x and z axes.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

81

Basic Game Logic

1. using UnityEngine;

2. using System.Collections;

3.

4. public class AutoMover : MonoBehaviour {

5.

6. //Movement speed

7.	 public	Vector3	speed	=	new	Vector3(0,	0,	0);
8.

9. void Start () {

10.

11. }

12.

13. void Update () {

14.	 //Move	the	object	with	the	specified	speed
15. transform.Translate(speed * Time.deltaTime);

16. }

17. }

Listing 16: A script that moves the object in a specific direction with a constant speed

LIGS University
based in Hawaii, USA

 ▶ enroll by October 31st, 2014 and

 ▶ save up to 11% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

82

Basic Game Logic

1. using UnityEngine;

2. using System.Collections;

3.

4. public class Wrapper : MonoBehaviour {

5.

6. //When the target moves out of these bounds,

7. //it should be wrapped around the scene

8.	 public	Vector3	limits	=	new	Vector3(10,	0,	10);
9.

10. void Start () {

11.

12. }

13.

14. void Update () {

15. //Get the current position

16.	 Vector3	newPos	=	transform.position;
17.

18. if(transform.position.x > limits.x){

19.	 //Object	left	from	the	right,	return	it	from	the	left
20.	 newPos.x	=	-limits.x;
21. }

22.

23. if(transform.position.x < -limits.x){

24.	 //Object	left	from	the	left,	return	it	from	the	right
25.	 newPos.x	=	limits.x;
26. }

27.

28. if(transform.position.z > limits.z){

29.	 	////Object	left	from	the	front,	return	it	from	the	back
30.	 newPos.z	=	-limits.z;
31. }

32.

33.	 //Set	the	new	position	after	the	modifications
34.	 transform.position	=	newPos;
35. }

36. }

Listing 17: The script that wraps the object around the scene if it leaves the view of the camera

Nothing new in these scripts except the wrapping step, which is as simple as modifying the values of x
or z in the position if they exceed the preset limits. After adding Target, AutoMover, and Wrapper to the
cube that we want use as a target, we are now ready to create a prefab for targets, which should allow
us to add a number of targets to the scene.

To create a prefab, select the desired object from the hierarchy, and then drag it to any folder in the project explorer,
preferably to a special folder named prefabs as in Illustration. After that you can add as many copies as you want to the
scene by dragging the prefab to the scene view or the hierarchy. The objects that are connected to the prefab appear
in the hierarchy in blue color. Any modification applied to the prefab such as adding a script or modifying a component
affects all objects connected to this prefab.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

83

Basic Game Logic

Illustration 31: Creating a new prefab from an object

I believe it is a good time to dive again in programming details, and this time in some details of object-
oriented programming. One of the important features of object orientation is the ability to reuse the
code, and this is usually achieved by using inheritance. In Unity, however, there is a different technique
that can be used, namely composition over inheritance. In this technique, we separate the different
behaviors objects can expose into separate scripts. After that we can arbitrarily attach these scripts in
any combination to the objects. For example, we can have a static target that does not move by attaching
Target script only to it. If we want this target to move as well, all we have to do is to attach AutoMover
script to it. Similarly, an object that has AutoMover script but does not have Target, is actually a moving
object that cannot be shot and hit.

Now we need to create our bullet. The object we are going to use is a sphere with a scale of (0.25, 025,
0.25). The bullet moves forward with a constant speed when shot, and it also has a distance range. When
the bullet moves beyond its distance range, it is automatically destroyed and removed from the scene.
This first behavior of the bullet is provided by Projectile script shown in Listing 18. Additionally, the
bullet must be able to detect any collision between itself and any one of the targets in the scene. If the
bullet hits a target, this target must be registered as hit and the bullet must be destroyed immediately.
This collision detection is the job of TargetHitDestroyer script shown in Listing 19.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

84

Basic Game Logic

1. using UnityEngine;

2. using System.Collections;

3.

4. public class Projectile : MonoBehaviour {

5.

6. //Movement speed of the projectile in m/s

7.	 public	float	speed	=	15;
8.

9. //How many meters can the projectile travel?

10.	 public	float	range	=	20;
11.

12. //Compute distance moved so far. When total distance reaches

13. //the range, the projectile must be destroyed

14.	 float	totalDistance	=	0;
15.

16. void Start () {

17.

18. }

19.

20. void Update () {

21. //Compute the distance to move in current frame

22.	 float	distance	=	speed	*	Time.deltaTime;
23. //Move the projectile forward on its local z axis

24. transform.Translate(0, 0, distance);

25.

26. //Add current frame distance to total distance

27.	 totalDistance	+=	distance;
28.

29. //When the projectile reaches its range distance

30. //we have to destroy it

31. if(totalDistance > range){

32.	 Destroy(gameObject);
33. }

34. }

35. }

Listing 18: A script for moving the bullet and setting a distance range for it

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

85

Basic Game Logic

1. using UnityEngine;

2. using System.Collections;

3.

4. public class TargetHitDestroyer : MonoBehaviour {

5.

6. void Start () {

7.

8. }

9.

10. void Update () {

11. //Find all targets in the scene

12.	 Target[]	allTargets	=	FindObjectsOfType<Target>();
13.

14. //Check each target if it is hit

15. foreach(Target t in allTargets){

16. //We care about targets that havn’t already been hit

17. if(!t.hit){

18. //Distance between the projectile the target

19.	 		 float	distance	=	Vector3.Distance(
20. transform.position,

21. t.transform.position);

22.

23. if(distance <

24. t.transform.localScale.magnitude * 0.5f){

25. //The projectile touches the target

26.	 		 	 //Set	hit	flag	to	true.
27.	 		 	 t.hit	=	true;
28.

29.	 		 	 //Now	destroy	the	projectile
30.	 		 	 Destroy(gameObject);
31.

32. }

33. }

34. }

35. }

36. }

Listing 19: A script that detects collisions between an object and the targets in the scene

TargetHitDestroyer script introduces to us the concept of arrays. An array is a collection of objects
that have the same type, and can be accessed through a single variable. In line 12 of Listing 19 we
declare the array allTargets, in which we are going to store all the targets in the scene. You can easily
recognize arrays through the square brackets [] in their declaration. In the same line we call the function
FindObjectsOfType() and give it the type Target, which is the script added to the target prefab, and hence
exists in all target objects. This function will search the scene for any object that has Target attached to
it. FindObjectOfType<Target>() returns to us an array that contains all targets, and we store this array
in allTargets.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

86

Basic Game Logic

Now we have to go through all targets stored in the array and test them one by one for possible collisions
with our bullet. We use foreach loop to go through the elements of the array. The value of t changes at
the beginning of each iteration of the loop, and takes the value of the next element in the array until
it goes through all elements. The first thing to do in each iteration is to check whether the target has
already been hit, and ignore it in if this is true (line 17). After that, we find the distance between the bullet
and the target using Vector3.Distance(). If the distance is less than the “virtual” radius of the target, we
count this as a hit (lines 23 and 24), and hence set the hit flag in the target to true and destroy the bullet
(lines 27 and 30). I have mentioned that the radius of the target is virtual, since the target is a cube and
therefore doesn’t actually have a radius. However, we try to estimate a distance that can approximately
simulate a border for the target object. Since the length of each cube edge is one, we multiply it by 0.5
to get the minimal possible distance between the surface of the cube and its center.

Once we have added these two scripts to the sphere that represent the bullet, we can create the prefab
of the bullet in a similar way to what we have done for the target. Since we do not need a bullet in the
scene at the beginning, you must delete the bullet object from the scene after creating the prefab.

To delete an object from the scene, simple select it from the hierarchy and hit Delete on the keyboard.

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

87

Basic Game Logic

Now we need to create a prefab for the rocket, in a process that reflects the power of core reusability.
First we need a shape to represent the rocking, and this shape is going to be a cube with a scale of
(0.1, 0.1, 0.75). The rocket has a behavior similar to the bullet: it moves forward by a constant speed,
hits the targets and destroys them. We can give these abilities to the rocket by adding Projectile and
TargetHitDestroyer scripts to it. One additional feature the rocket has is the ability to lock on a target
and follow it. To implement this feature, we add a third script to the rocket object. This third script is
TargetFollower, shown in Listing 20.

1. using UnityEngine;

2. using System.Collections;

3.

4. public class TargetFollower : MonoBehaviour {

5.

6. //Target we are following

7. Target currentTarget;

8.

9. void Start () {

10.	 //At	the	beginning	we	find	the	nearest	target
11.	 Target[]	allTargets	=	FindObjectsOfType<Target>();
12.

13. //Make sure there are targets in the scene

14. if(allTargets.Length > 0){

15.	 //Assume	first	target	is	the	nearest
16.	 Target	nearest	=	allTargets[0];
17.

18. //Find the nearest target

19. foreach(Target t in allTargets){

20. //We don’t care about targets that have been

21. //already hit

22. if(!t.hit){

23. //Distance between projectile

24. //and current target

25.	 		 	 float	distance	=
26. Vector3.Distance(

27. transform.position,

28. t.transform.position);

29.

30. //Distance between projectile

31. //and nearest target

32.	 		 	 float	minDistance	=
33. Vector3.Distance(

34. transform.position,

35. nearest.transform.position);

36.

37. //Update the nearest target if necessary

38. if(distance < minDistance){

39.	 nearest	=	t;
40. }

41. }

42. }

43.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

88

Basic Game Logic

44. //Set current target to nearest target

45.	 currentTarget	=	nearest;
46. }

47. }
48.

49. void Update () {

50. //Make sure that current target

51. //has not been already destroyed or hit

52.	 if(currentTarget	!=	null	&&	!currentTarget.hit){
53. //Have the projectile to look at the target

54. transform.LookAt(currentTarget.transform.position);

55. }

56. }

57. }

Listing 20: Target following script of the rocket

The longest step in TargetFollower is the search algorithm we perform in Start(). This algorithm gets all
targets in the scene, stores them in the array allTargets, and searches for the nearest target to the position
where the rocket is created. Before searching for the nearest target, it is important to make sure that
there are targets in the scene, which we do in line 14 by checking whether allTargets.Length is greater
than zero. If there are targets in the scene, we take the first one and store it in nearest. It is important
to realize that arrays have zero-based positions, which means that the first object in the array is located
at the position zero. We use allTargets[0] o access the first object in the array. Storing the first element
in nearest means that we consider it the nearest one, then we start to search for a possible closer object.

FindObjectsOfType<Target>() returns all objects in the scene, including hit objects which are currently
playing falling animation. However, it does not return the targets which have already been destroyed and
removed from the scene. In line 22, we make sure that the object has not yet been hit before considering
it a candidate target. If the target has not yet been hit, we find the distance between its position and the
position of the rocket and store it in distance (lines 24 through 28). Additionally, we find the distance
between the rocket and the nearest target and store it in minDistance (lines 32 through 35). If distance is
less than minDistance, this means that the current target is closer to the rocket than the nearest object we
have so far. Therefore, in this case we set the value of the nearest target to current target (lines 38 through
40). The last step in Start() is to store the nearest target that we have found in currentTarget (line 45).

In Update() function of TargetFollower, we make sure that the current target is not null, which means it
has a value stored in it. The current can be null when there are not targets in the scene, and therefore
no nearest target or current target. After that, we check the current target to test if it has already been
hit by another rocket or a bullet. A quick hint regarding && operator in line 52: this operator is called
“And”, and it requires both operands to be true in order to return a true. However, if the first operand is
false, the second is not going to be evaluated. This behavior is necessary in this case, because we cannot
check nearestTarget.hit if nearestTarget it self is null, otherwise we get an error.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

89

Basic Game Logic

By adding TargetFollower to the rocket, our prefab becomes ready to be created. So we create the rocket
prefab and then delete the rocket object from the scene. Now we have our three prefabs: target, bullet,
and rocket, we are ready to write the necessary scripts for the shuttle. Before moving on to the shuttle,
we have to complete our scene by adding few targets. For example, you can add two rows of targets in
front of the shuttle, by dragging target prefab into the scene several times in the desired positions. You
can then set movement speed of first row targets to, say, (3, 0, 0) and the speed of second row targets to
(-3, 0, 0). Now you have two rows of targets that move from right to left and from left to right. Now let’s
add the script that allows us to control shuttle movement, which is ShuttleControl, shown in Listing 21.

1. using UnityEngine;

2. using System.Collections;

3.

4. public class ShuttleControl : MonoBehaviour {

5.

6. //Shuttle movement speed

7.	 public	float	speed	=	7;
8.

9. void Start () {

10.

11. }

12.

13. void Update () {

14. //Reads keyboard input and moves

15. //the shuttle on local x and z axis

16. if(Input.GetKey(KeyCode.UpArrow)){

17. transform.Translate(0, 0, speed * Time.deltaTime);

18. } else if(Input.GetKey(KeyCode.DownArrow)){

19. transform.Translate(0, 0, -speed * Time.deltaTime);

20. }

21.

22. if(Input.GetKey(KeyCode.RightArrow)){

23. transform.Translate(speed * Time.deltaTime, 0, 0);

24. } else if(Input.GetKey(KeyCode.LeftArrow)){

25. transform.Translate(-speed * Time.deltaTime, 0, 0);

26. }

27. }

28. }

Listing 21: A script for controlling the shuttle

In addition to ShuttleControl, we need to add Wrapper and TargetHitDestroyer to the shuttle. This
makes the shuttle wrap from right to left and vice-versa, and if the shuttle hits a target, it is going to be
destroyed as well as the target. Two additional scripts are needed: one for shooting bullets, and another
one for launching rockets. These scrips are BulletShooter shown in Listing 22, and RocketLauncher shown
in Listing.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

90

Basic Game Logic

1. using UnityEngine;

2. using System.Collections;

3.

4. public class BulletShooter : MonoBehaviour {

5.

6. //Prefab of the bullet the shuttle shoots

7.	 public	GameObject	bullet;
8.

9. //How many seconds must pass between two consecutive bullets?

10.	 public	float	timeBetweenBullets	=	0.2f;
11.

12. //When did the shuttle shoot the last bullet?

13.	 float	lastBulletTime	=	0;
14.

15. void Start () {

16.

17. }

18.

19. void Update () {

20. //We use left control for bullet shooting

21. if(Input.GetKey(KeyCode.LeftControl)){

22. //Check if the time between bullets as already passed

23.	 if(Time.time	–	lastBulletTime	>	timeBetweenBullets){
24. //Create new bullet using the prefab.

25. //The bullet is at the same position of the

26. //shuttle and looks at the same direction of it

27. Instantiate(bullet, //object to create

28. transform.position, //position of the object

29. transform.rotation);//rotation of the object

30.

31. //Register the time in which we shot the bullet

32.	 		 lastBulletTime	=	Time.time;
33. }

34. }

35. }

36. }

Listing 22: Bullet shooting script

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

91

Basic Game Logic

1. using UnityEngine;

2. using System.Collections;

3.

4. public class RocketLauncher : MonoBehaviour {

5.

6. //Prefab of the rockets the shuttle launches

7.	 public	GameObject	rocket;
8.

9. void Start () {

10.

11. }

12.

13. void Update () {

14. //We use spacebar (discrete presses) for rocket launching

15. if(Input.GetKeyDown(KeyCode.Space)){

16.

17. //How many rockets there are in the scene?

18.	 TargetFollower[]	rockets	=
19.	 		 FindObjectsOfType<TargetFollower>();
20.

21. //Do not allow more than one rocket at the same time

22.	 if(rockets.Length	==	0){
23. //Create new rocket at the position of the

24. //shuttle and at the same rotation of it

25. Instantiate(rocket,

26. transform.position, transform.rotation);

27. }

28. }

29. }

30. }

Listing 23: Rocket launching script

After attaching BulletShooter script to the shuttle, the first thing we have to do is to set the value of
bullet. This variable is going to be used as a reference to the prefab needed to create new bullets. Recall
that we have already prepared this prefab and saved it in our project. So we need now to tell the script
which prefab should be the source when making bullet copies. Binding a prefab to a variable in a script
is accomplished by dragging the prefab to the field of the variable in the inspector as in Illustration 32.

Illustration 32: Binding a prefab to a variable in a script

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

92

Basic Game Logic

This script keeps shooting bullets as long as the player is pressing left control key. However, there is a
preset time gap between two consecutive bullets. The variable timeBetweenBullets determines how many
seconds must pass before a new bullet can be shot, and the variable lastBulletTime stores the last time of
the last shooting. In line 23, we subtract lastBulletTime from the current time to get how many seconds
passed so far since last shooting. If this time is greater than timeBetweenBullets, then we instantiate a
new bullet from the prefab. The function Instantiate() takes a prefab to make a copy of, a position and
a rotation for the new object. We call this function in line 27 and pass to it the bullet prefab through
bullet variable. The position and rotation we provide to Instantiate() are the position and rotation of the
shuttle, which makes the bullet get out from the shuttle.

We use a similar technique in RocketLauncher script. We have, however, two differences. The first
difference is the use of discrete key presses on the space bar as a trigger for rockets, unlike the continuous
reading of left control key in BulletShooter. The second difference is the limitation on the number of
rockets that may exist in the scene simultaneously. In lines 18 and 19 we get an array of all rockets in
the scene by finding all objects of type TargetFollower. Since this script exists only in rocket objects, the
number of elements in the array is exactly the same number of the rockets that are in the scene. If the
length of this array is zero, then there are no rockets in the scene and we may instantiate a new one
(lines 22 through 27). Illustration 33 shows a screen shot of the demo. The result can also be seen in
scene9 in the accompanying project.

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

93

Basic Game Logic

Illustration 33: A screen shot of space shuttle demo

3.2 Collectables

Many computer games depend on spreading collectable items around game world to motivate the player
to explore the world or involve in some challenges to get rewards. For example, player can collect coins
that can later be used to buy virtual tools or learn new abilities like in many RPG games. In this section
we learn how to make such collectables.

Collectables share a common behavior, which is obviously the ability to be collected when someone
touches them. This someone is not necessarily the character of the player, since it can also be a non-
player character (NPC). Therefore, we are going to make a script that marks collectables, and another
script that marks collectors. When any collector hits any collectable, a collection attempt is triggered.
This attempt can either succeed or fail depending on many factors as we are going to see. In this section
I am going to create a ball that represents the player, and this ball moves and rolls along x and z axes.
The camera looks at the ball from above, and follows ball movement on x and z axes. The ball is able
to collect coins, and has an inventory box to store the collected coins. Additionally, there are two types
of food this ball can collect, and each type increases the size of the ball by a specific amount for limited
time. To begin, create a ball with scale (1, 1, 1) to represent the player, and a ground plane with scale (10,
1, 10). I assign a glass texture to the ball and a wood ground texture to the ground like in Illustration
34. Let’s also position the camera over the ball with a height of 15, and rotate it to look downwards to
be able to see the ball.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

94

Basic Game Logic

Illustration 34: Glass ball that serves as player character

To control the ball, we create BallRoller script. We also add ObjectTracker script to the main camera to
make it follow the ball. Listing 24 shows BallRoller control script, and Listing 25 shows ObjectTracker
script for the camera. Remember to assign the ball game object to objectToTrack variable in ObjectTracker
to tell the camera which object it must track.

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

95

Basic Game Logic

1. using UnityEngine;

2. using System.Collections;

3.

4. public class BallRoller : MonoBehaviour {

5.

6. //Movement speed on x and z axes

7.	 public	float	moveSpeed	=	5;
8.

9. //Rolling speed of the ball

10.	 public	float	rollSpeed	=	360;
11.

12. void Start () {

13.

14. }

15.

16. void Update () {

17. //Move along global x axis and roll around global z axis

18. if(Input.GetKey(KeyCode.UpArrow)){

19. transform.Translate(0, 0,

20. moveSpeed * Time.deltaTime, Space.World);

21.

22. transform.Rotate(rollSpeed * Time.deltaTime,

23. 0, 0, Space.World);

24. } else if(Input.GetKey(KeyCode.DownArrow)){

25. transform.Translate(0, 0,

26. -moveSpeed * Time.deltaTime, Space.World);

27.

28. transform.Rotate(-rollSpeed * Time.deltaTime,

29. 0, 0, Space.World);

30. }

31.

32. //Move along global z axis and roll around global x axis

33. if(Input.GetKey(KeyCode.RightArrow)){

34. transform.Translate(moveSpeed * Time.deltaTime,

35. 0, 0, Space.World);

36.

37. transform.Rotate(0, 0,

38. -rollSpeed * Time.deltaTime, Space.World);

39. } else if(Input.GetKey(KeyCode.LeftArrow)){

40. transform.Translate(-moveSpeed * Time.deltaTime,

41. 0, 0, Space.World);

42. transform.Rotate(0, 0,

43. rollSpeed * Time.deltaTime, Space.World);

44. }

45. }

46. }

Listing 24: The script that controls ball movement using arrow keys

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

96

Basic Game Logic

1. using UnityEngine;

2. using System.Collections;

3.

4.	 public	class	ObjectTracker	:	MonoBehaviour	{
5.

6.	 //Object	to	track
7. public Transform objectToTrack;

8.

9. void Start () {

10.

11. }

12.

13. void Update () {

14. //Set (x, z) position to (x, z)

15. //position of the tracked object

16.	 Vector3	newPos	=	transform.position;
17.	 newPos.x	=	objectToTrack.position.x;
18.	 newPos.z	=	objectToTrack.position.z;
19.	 transform.position	=	newPos;
20. }

21. }

Listing 25: The script that lets the camera track the player

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

97

Basic Game Logic

The ball is going to be a collector, which collects coins or other things (collectables) by touching them.
Therefore, we need now two additional scripts: Collectable, which marks an object as collectable, and
Collector, which checks for collision with the collectables that exist in the scene. Collectable script is
shown in Listing 26.

1. using UnityEngine;

2. using System.Collections;

3.

4. public class Collectable : MonoBehaviour {

5.

6. //Distance between the center and

7. //the external collision surface

8.	 public	float	radius	=	0.5f;
9.

10. void Start () {

11.

12. }

13.

14. void Update () {

15.

16. }

17.

18. //This function is going to be invoked by the collector

19. //When it touches this collectable

20. public void Collect(Collector owner){

21. //Tell all other scripts in the collectable object

22. //to run collection logic if they have

23.	 SendMessage("Collected",
24.	 		 owner,	SendMessageOptions.RequireReceiver);
25. }

26. }

Listing 26: Script for collectable objects

As you can see, both Start() and Update() functions are empty. This means that Collectable script is
passive, and all what it does is to wait for the collector to call its Collect() function. The collector is also
going to use radius value to test collision with the collectable. When Collect() function is called, the
script sends a message called Collected and attaches an object with this message owner. In this context,
the value of owner refers to the collector that called Collect() (i.e. the collector that has just collided the
collectable). The attachment is important because it tells who should receive this collectable, in case
there are multiple collectors in the game.

The question now is: who is going to receive the message Collected, which has been sent by Collectable
script? The answer is: all scripts attached to the same game object of Collectable. We are going to see
how to receive this message and how to write an appropriate logic to handle it. Therefore, the only
job for Collectable is to tell other scripts that the object has collided with a collector. Notice that we
use SendMessageOptions.RequireReceiver, which requires that at least one script receive this message,
otherwise an error is raised. We require a receiver for this message since a collectable that does not
include any other logic does not make sense.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

98

Basic Game Logic

Lets move now to the other side of the collection process, and have a look at Collector script. This script
is shown in Listing 27.

1. using UnityEngine;

2. using System.Collections;

3.

4. public class Collector : MonoBehaviour {

5.

6. //Radius of collision with collectables

7. public	float	radius	=	0.5f;
8.

9. void Start () {

10.

11. }

12.

13. void Update () {

14. //Get all collectables in the scene

15. Collectable[]	allCollectables	=

16. FindObjectsOfType<Collectable>();
17.

18. //Check for collision with collectables

19. //Use the radii to determine collision distance

20. foreach(Collectable col in allCollectables){

21. float	distance	=
22. Vector3.Distance(transform.position,

23. col.transform.position);
24.

25. //If the distance is less than the sum of the radii

26. //Then we can try to collect this collectable

27. if(distance	<	col.radius	+	radius){
28. //Tell the collectable that this collector

29. //is trying to collect it

30. col.Collect (this);

31. }

32. }

33. }

34. }

Listing 27: Script for collecting collectable objects

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

99

Basic Game Logic

Notice that the function of Collector script is very abstract: it checks only whether there are collisions
with collectables, and calls Collect() function from the colliding collectables. Collision check is performed
by comparing the distance between the collector and the collectable with the sum of their virtual radii
(line 27). Radii are virtual because the collector and the collectable are not necessarily spherical shapes,
but this method is enough to serve the purpose in our case. If a collision is detected, the collector calls
Collect() function of the collectable, and gives itself as a value for owner parameter. As you see, a script
can get the value of itself by using the word this (line 30).

Now we have the mechanism that can detect a collision between a collector and a collectable. Next
step is to determine what should be done after this collision. Theoretically, there is an infinite number
of collectables, and each one of these need to be handled differently. For example, coins increase the
amount of money the player has, while health portions restore player’s health. In our example game, we
have two main types of collectables: coins and food. Coins are going to increase the amount of money
in the category box, while food increase the size of the ball (player character) with a specific factor for
limited time. By increasing the size of the ball, food helps the player to collect coins faster. There are
two types of food: green and red, and each one of them has its own factor if size increment as well as
time limit. Before going into the details of these collectables, let’s have a quick look at Listing 28, which
shows YRotator, a simple script that rotates an object around the global y axis with specific speed.

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

100

Basic Game Logic

1. using UnityEngine;

2. using System.Collections;

3.

4. public class YRotator : MonoBehaviour {

5.

6. //Rotation speed in degree/second

7.	 public	float	speed	=	180;
8.

9. //Should the angle be randomized at the beginning?

10.	 public	bool	randomStartAngle	=	true;
11.

12. void Start () {

13. if(randomStartAngle){

14. //Rotate with a random angle between 0 and 180

15. transform.Rotate(

16. 0, Random.Range(0, 180), 0, Space.World);

17. }

18. }

19.

20. void Update () {

21. //Simply rotate around global y

22. transform.Rotate(

23. 0, speed * Time.deltaTime, 0, Space.World);

24. }

25. }

Listing 28: A script to rotate objects around the global y axis

It is possible to specify randomStartAngle to avoid having a lot of object that rotate similarly and hence
have a nice randomness in the scene. Notice the use of Random.Range() function, which can be used
along with lower and upper limits to generate random numbers in between. For example, we use it here
to get a random angle at the beginning of the rotation, which lies between 0 and 180 degrees.

All collectables in our scene are going to have Collectable and YRotator script. For instance, you can say
that we are going to use rotation as a sign to tell the player that this object can be collected. Lets begin
with the coin, which can be made of a cylinder with a scale of (1, 0.02, 1), and we can put a golden
texture on it to give the feeling of a real coin. It is also a good idea to add a point light as a child to the
coin. We are going to give this light a yellow color, and position it in the center of the coin. It is strongly
recommended that you create a prefab for the coin, since we are going to need a large number of them
in the scene. Illustration 35 shows how our coin is going to look like.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

101

Basic Game Logic

Illustration 35: The coin we are going to use

The coin is now collectable, which means that collisions with collector can be detected. Additionally,
it has the y-rotation feature, so it is going to rotate in its position around the global y. We need now to
specify happens when a collector tries to collect this coin. Obviously, it is going to increase the amount
of money the collector has in his inventory box. Therefore, I am going to begin with InventoryBox script
shown in Listing 29.

1. using UnityEngine;

2. using System.Collections;

3.

4. public class InventoryBox : MonoBehaviour {

5.

6. //How much money does the player have?

7.	 public	int	money	=	0;
8.

9. void Start () {

10.

11. }

12.

13. void Update () {

14.

15. }

16. }

Listing 29: The inventory box for the collector

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

102

Basic Game Logic

This is a simple script we have to attach to the ball, in order to make it able to collect money (coins). This
script can be extended to include whatever inventory you may think of. However, for our case we need
only one variable, which is money. The importance of this script is the ability to gives to the collector. If
there is a collector who does not have an inventory box, its collision with coins is going to be ignored,
since coins require inventory box to be collected into. This can be useful, for example, if you want to have
NPCs that can collect many things (weapons, power-ups), but not coins. Now we move back to our coin
and add to it the script Coin, which specifies the behavior of a coin. This script is shown in Listing 30.

1. using UnityEngine;

2. using System.Collections;

3.

4. public class Coin : MonoBehaviour {

5.

6. //This value is going to be added to the

7. //money of the inventory box upon collection

8.	 public	int	coinValue	=	1;
9.

10. void Start () {

11.

12. }

13.

14. void Update () {

15.

16. }

17.

18. //We declare this function to receive Collectable’s

19. //command to run collection logic

20. public void Collected(Collector owner){

21. //Check if the collector has an inventory box

22.	 InventoryBox	box	=	owner.GetComponent<InventoryBox>();
23.	 if(box	!=	null){
24. //Inventory box exists,

25. //so increase money by coin value

26.	 box.money	+=	coinValue;
27.

28. //Done, destroy coin object

29.	 Destroy(gameObject);
30. }

31. }

32. }

Listing 30: The script of a collectable coin

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

103

Basic Game Logic

We can have coins with different amounts, by setting the value of coinValue. Just like Collectable, Start()
and Update() functions are empty. The new function we add to this script is Collected, which takes a value
of type Collector. This owner is in fact the collector who is trying to collect this coin. Back to Collectable
script (Listing 26 in page 76), recall that Collectable sends a message to other scripts to inform them
about a collision with a collector. That message is called Collected and includes an attachment, which is
the collector. By declaring the method called Collected() and giving it the parameter owner, we specify
Coin script as a receiver of this message. Consequently, when Collected message is received, Collected()
function is executed. What does this function do is to get the inventory box of the collector (owner). By
calling owner.GetComponent<InventoryBox>(), we try to get a reference to the inventory box, and store
this reference in box. If no inventory box found, the value of box becomes null, and hence nothing is
done. However, if the inventory box exists, the amount of money inside that box is increased by coinValue.
Finally, the coin game object is destroyed.

Illustration 36 illustrates the interactions between Collector, Collectable, Coin, and CategotyBox, along
with all interactions among these scripts.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

104

Basic Game Logic

Illustration 36: Coin collection mechanism with the interactions among all involved scripts

Diagram in Illustration 36 summarizes the programmatic steps of coin collection. In step A the collector
calls Collect() function of Collectable script attached to the coin, giving itself as the owner of what is
to going to be collected. In step B, the collectable sends the message Collected to all scripts attached to
the coin. In step C, Coin script receives the message by executing its own function Collected(), which
eventually performs steps D and E. Coin script tries in step D to find InventoryBox script inside the
collector. Recall that the variable owner inside Collected() function refers to the collector. Step E (money
amount increment) is executed in case the inventory box is found, otherwise this step is not executed,
and hence the coin is neither collected nor destroyed.

A similar process takes place in case of food collection. However, collection logic as well as the effect on
the collector are different. We are going to have two types of food, and both of them are going to have
the same structure. Additionally, we are going to create a separate prefab for each type of them. Taking
food shall increase the size of the ball for a limited time. The two types of food we are going to create
vary in these two values. Listing 31 shows SizeChanger script, which handles food collectables. At the
other end, Listing 32 shows Food script, which we are going to add to our food objects. Food collectables
are also going to have Collectable and YRotator scripts as well.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

105

Basic Game Logic

1. using UnityEngine;

2. using System.Collections;

3.

4. public class SizeChanger : MonoBehaviour {

5.

6. //current size of the object

7.	 float	currentSize	=	0;
8.

9. //Reference to Collector script

10. Collector col;

11.

12. void Start () {

13.	 col	=	GetComponent<Collector>();
14. }

15.

16. void Update () {

17.

18. }

19.

20. //Called by Food script to try to increase the size

21.	 public	bool	IncreaseSize(float	amount,	float	duration){
22. //Size can be increased only if it is zero

23.	 if(currentSize	==	0){
24. //Set increment amount and increase the scale

25.	 currentSize	=	amount;
26.	 transform.localScale	=	Vector3.one	*	currentSize;
27. //Call DecreaseSpeed() function after duration

28.	 Invoke("DecreaseSize",	duration);
29.

30. //If there is a collector, increase its radius

31.	 if(col	!=	null){
32.	 col.radius	=	col.radius	*	currentSize;
33. }

34.	 //Return	true	=	food	has	been	taken
35. return true;

36. }

37.	 //Return	false	=	food	has	NOT	been	taken
38. return false;

39. }

40.

41. //Resets size to one

42. public void DecreaseSize(){

43.	 transform.localScale	=	Vector3.one;
44. //If there is a collector, restore its original radius

45.	 if(col	!=	null){
46.	 col.radius	=	col.radius	/	currentSize;
47. }

48. //Set current size back to zero

49.	 currentSize	=	0;
50. }

51. }

Listing 31: A script that reacts to food collection by changing ball size

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

106

Basic Game Logic

52. using UnityEngine;

53. using System.Collections;

54.

55. public class Food : MonoBehaviour {

56.

57. //Size increment for the food taker

58.	 public	float	sizeIncrementAmount	=	2;
59.

60. //How long can this food increase size (seconds)?

61.	 public	float	incrementDuration	=	5;
62.

63. void Start () {

64.

65. }

66.

67. void Update () {

68.

69. }

70.

71. //We declare this function to receive Collectable’s

72. //command to run collection logic

73. public void Collected(Collector owner){

74. //Collector must have a size changer to take food

75.	 SizeChanger	changer	=	owner.GetComponent<SizeChanger>();
76.	 if(changer	!=	null){
77. //Size changer found, try to take food

78.	 bool	canTake	=
79. changer.IncreaseSize(

80. sizeIncrementAmount, incrementDuration);

81. //Has the food been taken?

82. if(canTake){

83.	 		 //canTake	=	true,	so	the	food	has	been	taken
84.	 		 Destroy(gameObject);
85. }

86. }

87. }

88. }

Listing 32: A script for collectable food

SizeChanger in Listing 31 script begins with looking for a Collector attached to the same game object. If
the collector exists, it is stored in col variable. There are two major functions in SizeChanger: IncreaseSize()
and DecreaseSize(). IncreaseSize() is called by Food script, when the collector hits a collectable that has
the script Food attached to it. IncreaseSize() begins with checking the value of currentSize variable; if
the value is not zero, the function returns false, which means no food can be taken right now. However,
if currentSize is zero, the value of amount parameter is stored in currentSize, and the scale of the ball
(collector) is increased with the same value. In line 28, we use Invoke() function to setup the execution
of another function later on. In this case, we specify DecreaseSize() function by writing its name, and
we set the delay to the value of duration parameter. Finally, if col variable is not null (i.e. Collector script
is attached to the game object), we multiply its radius by the value of currentSize, so the radius becomes
suitable for the new size of the ball.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

107

Basic Game Logic

When the specified delay time for calling DecreaseSize() is over, Unity calls the function. The job of this
function is to reset all variables to their default values; so the scale is set back to Vector3.one, the radius
of the collector is divided by currentSize, and finally currentSize is set back to zero. It is important to
notice that as long as cuurentSize is not zero, this means that the effect of an already taken food is still
active, and this case no additional food collectable can be taken. This rule is enforced by Food script.

Food script in Listing 32 handles Collected message sent by Collectable like what we have seen in Coin
script (Listing 30 in page 80). As we have already seen, Coin script depends on InventoryBox, so if the
latter is missing, hitting a coin does not have any effect. Similarly, Food script depends on SizeChanger,
since its job is to increase the size of the collector. Therefore, the first step in Collect() function is to
make sure that the collector trying to collect this food has a SizeChanger, otherwise nothing happens. If
SizeChanger exists, we declare the variable canTake, to test whether SizeChanger is in a state that allows
it to take the food. Recalling IncreaseSize() function in SizeChanger, it returns false if the size is already
increased. This returned value is stored in canTake to be checked in the next step (line 31). A false value
of canTake means that this food has not been taken by SizeChanger, so we just ignore the hit and the
food game object is not destroyed. However, if canTake is true, this means that the food has been taken
by SizeChanegr and the size of the collector has been incareased. In this case, the food object is destroyed.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

108

Basic Game Logic

When applying the effect of Food on the collector, we use the values of sizeIncrementAmount and
incrementDuration. Since these variables are public, their values can be set from the inspector. This
makes it possible to make the two types of food we want to have. Now we can create two game objects,
say, cubes with different sizes and textures, and attach to each one YRotator, Collectable, and Food
scripts. The only difference regarding the scripts is going to be in the values of sizeIncrementAmount and
incrementDuration variables. So let’s make the “green food” with size increment of 2 and a duration of
7.5 seconds, and the “red food” with size increment of 3.5 and a duration of 5 seconds. These types of
food are shown in Illustration 37. The final result can be seen in scene10 in the accompanying project.

Illustration 37: Red food object (right) and green food object

3.3 Holding and releasing objects

It is necessary sometimes to give the player the ability to move objects around the scene, so he can stack
some boxes to access a high place, or remove some obstacles off the way, and so on. Moving objects
can be accomplished in different ways. For example, the player can push objects by moving towards
them, or he can use some super powers or devices to hold objects (recall, for example, the gravity gun
in Half-life 2). In this section, we are going to make use of relations between objects to implement a
mechanism that allows the player to hold some objects, move while holding them, and release/discard
these objects at any position.

In this section, I am going to reuse first person input system we have developed in section 2.4. What
we are going to do is to make the player able to hold the boxes and release them by pressing E key. The
scene we are going to use can be found in scene9 in the accompanying project. We need two scripts to
apply holding/releasing mechanism. The first script is Holdable, which we are going to add to all objects
that can be hold by the player. This script is shown in Listing 33, and it is an empty script that has only
a radius for checking distance with the holder. In our scene, we have to add this script to the boxes. It
is a better idea always to make a prefab of a holdable box and add copies of it to the scene.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

109

Basic Game Logic

1. using UnityEngine;

2. using System.Collections;

3.

4. public class Holdable : MonoBehaviour {

5.

6. //Radius of the holdable object

7.	 public	float	radius	=	1.5f;
8.

9. void Start () {

10.

11. }

12.

13. void Update () {

14.

15. }

16. }

Listing 33: Holdable script

Most of the job is going to be in Holder script, which is shown in Listing 34. This script need to be
attached to the cylinder that represents the player.

1. using UnityEngine;

2. using System.Collections;

3.

4. public class Holder : MonoBehaviour {

5.

6. //Radius of the holder

7.	 public	float	radius	=	0.5f;
8.

9. Holdable objectInHand;

10.

11. void Start () {

12.

13. }

14.

15. void Update () {

16. if(Input.GetKeyDown(KeyCode.E)){

17. //If there is no object in hand,

18. //look for one and try to hold it

19.	 	if(objectInHand	==	null){
20. //Get all holdables in the scene

21.	 		 Holdable[]	allHoldables	=
22.	 		 	 FindObjectsOfType<Holdable>();
23. foreach(Holdable holdable in allHoldables){

24. //Find distance between

25. //holder and holdable

26.	 		 	 float	distance	=
27. Vector3.Distance(

28. transform.position,

29. holdable.transform.position);

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

110

Basic Game Logic

30.

31. //Holdable must be close enough

32.	 		 	 bool	close	=
33.	 		 	 	 	distance	<	radius	+	holdable.radius;
34.

35. //Player must be facing the holdable

36. Vector3 dVector;

37.	 		 	 dVector	=	holdable.transform.position
38. - transform.position;

39.

40.	 		 	 float	ang	=
41. Vector3.Angle(dVector,

42. transform.forward);

43.

44. if(close && ang < 90){

45.	 		 	 	 //Now	we	can	hold	it
46. //1. Set it as object in hands

47.	 		 	 	 objectInHand	=	holdable;
48.

49. //2. Add it as a child to move with

50. //the holdable

51.	 		 	 	 	holdable.transform.parent	=	transform;
52.

53. return;

54. }

55.

56. }

57. } else {

58. //There is an object already in hands

59.	 		 //Now	we	have	to	release	it
60.	 		 objectInHand.transform.parent	=	null;
61.	 		 objectInHand	=	null;
62. }

63. }

64. }

65. }

Listing 34: Holder script

The idea of the script is simple: when the player presses E key, we make sure that there is no object in
hand. If this is true, we try to find a suitable object to hold. If such object is found, the holder holds it.
On the other hand, if there is already an object in hand, this object is released. The variable objectInHand
stores the object that is currently hold. If the value of this variable is null, it means that no object is in
hand (line 19).

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

111

Basic Game Logic

To hold an object, we perform a number of steps. We begin by getting all holdable objects in the scene
and iterate over them (lines 21 through 23). For each object, we compare the distance between it and
the holdable, and if the distance is less than the sum of radii, the value of close variable becomes true
(lines 26 through 33). The true value of close means that the object is close enough to be hold. However,
there is another condition to check. It is necessary for the holder to face the holdable object before
being able to hold it. This condition can be checked by measuring the angle between holder’s looking
direction (transform.forward) and the straight line between the position of the holder and the position
of the holdable (lines 36 through 42). Vector math tells us that we have to subtract the position of the
holder from the position of the holdable, in order to get a vector that represents the line between these
two objects. If the angle between these two vectors is less than 90, we consider this as facing (line 44).

After checking all relevant condition, it is time to do the actual holding of the holdable object. This step
is fairly simple. Firstly, we have to store the holdable we found in objectInHands variable. Since the value
of this variable is not null anymore, no other object can be hold, and pressing E again is going to release
it. Secondly, we set the parent of the holdable transform to be the holder itself. By doing this, we ensure
that the holdable moves with the holder wherever it goes, and rotates with it as well (lines 44 through
51). In line 53, we use return to stop the execution of Update(). This step enhances the performance by
avoiding unnecessary check of the rest of holdable objects, since we have already found what we need.
Lines 57 through 62 apply when the player hits E key while holding an object. In this case, objectInHand
is released by setting its parent to null, so it is not a child of the holder anymore. Finally, it is necessary to
set the value of objectInHand to null, in order to free the space for holding another object in the future.
The final result can be seen in scene11 in the accompanying project.

3.4 Triggers and usable objects

In addition to object holding, players can perform another actions that manipulate the scene. For example,
the player can activate or deactivate some devices, such as electrical lights. This activation or deactivation
is called triggering, because a player performs an action that triggers another action. When the player
switches light on or off, he deals in fact with the power switch, and the switch makes the effect. The switch
in this case is called the trigger, since it is responsible for performing the action. In the same example,
the player is the activator of the trigger, and the one who decided to perform the action.

In this section we are going to look at a general solution for usable triggers. Therefore, the code might
seem complex at the beginning, but in the long run it provides a portable pattern that can be used in
almost every situation. The scene we are going to use in this section is a bit more complex than previous
scenes, and it going to have a number of objects that are necessary to illustrate the complete picture.
Let’s begin with Illustration 38, which shows how does our scene look like.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

112

Basic Game Logic

Illustration 38: The scene we are going to use to illustrate triggers and usable objects

In the scene you see in Illustration 38, we have a first person character that is going to represent the
player. Additionally, we have (from left to right): a point light with an object above it to represent an
electrical light, a standing control panel to control the fan on the wall, and an electrical switch on the
wall to turn the light on or off. The usable objects in this scene are the fan and the light, and we are
going to be able to use them through the triggers (the switch and the control panel).

So let’s begin with the trigger that can be used by the player to use objects. Listing 35 shows SwitchableTrigger
script. I used the term switchable, since there are other types of non-switchable triggers, such as time
triggers and hit triggers that activate automatically when the player touches them.

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

113

Basic Game Logic

1. using UnityEngine;

2. using System.Collections;

3.

4. public class SwitchableTrigger : MonoBehaviour {

5.

6. //The trigger switches between these states

7. public TriggerState[] states;

8.

9. //Index of the current state

10.	 public	int	currentState	=	0;
11.

12. //Minimum distance to intarct with this trigger

13.	 	public	float	activationDistance	=	3;
14.

15. //Last time the current state changed

16. float	lastSwitchTime	=	0;
17.

18. void Start () {

19.

20. }

21.

22. void Update () {

23.

24. }

25.

26. //Tries to switch the state of the trigger

27. //Returns true if switching was successful

28. public bool SwitchState(){

29. //If states array is empty we do nothing

30. if(states.Length	==	0){

31. return false;

32. }

33.

34. //Get the current state

35.	 TriggerState	current	=	states[currentState];
36.

37. //Check if the rest time of current state is over

38.	 if(Time.time	–	lastSwitchTime	>	current.restTime){
39. //It is over, we can switch to next state

40.	 currentState	+=	1;
41.

42.	 //If	we	are	in	the	last	state,	return	to	the	first

43. if(currentState	==	states.Length){
44.	 		 currentState	=	0;

45. }

46.

47. //Get the new state

48.	 TriggerState	newState	=	states[currentState];
49.

50. //Send all messages of the new state

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

114

Basic Game Logic

51. foreach(TriggerMessage message

52. in newState.messagesToSend){

53. //Get the receiver of the message

54.	 		 GameObject	sendTo	=	message.messageReceiver;
55. //Get the name of the message

56.	 		 string	messageName	=	message.messageName;
57. //Send the message

58.	 		 sendTo.SendMessage(messageName);
59. }

60.

61. //Finally, record switching time

62.	 lastSwitchTime	=	Time.time;
63. return true;

64. } else {

65. return false;

66. }

67. }

68. }

69.

70. //Small structure to represent state

71. [System.Serializable]

72. public class TriggerState{

73.	 public	float	restTime;
74. public TriggerMessage[] messagesToSend;

75. }

76.

77. //A structure to represent messages sent by trigger

78. [System.Serializable]

79. public class TriggerMessage{

80.	 public	GameObject	messageReceiver;
81.	 public	string	messageName;
82. }

Listing 35: Switchable trigger script

Before going into the details of SwitchableTrigger itself, let’s jump to lines 72 through 76 and 79 through
83. In these lines we have two small classes that are a bit different than scripts we are used to. Firstly,
notice that they do not extend MonoBhaviour, and, secondly, they have the [System.Serializable] before
class declaration. These classes are going to be used as boxes that combine a number of variables. For
example, if I declare a variable of type TriggerState, this variable includes two variable inside it: restTime
and the array messagesToSend. The importance of [System.Serializable] is it makes variables of this class
visible in the inspector, just like all variable types we have been using up to now.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

115

Basic Game Logic

TriggerState is going to be used to specify how many states a switch can have. The number of states is
most of time 2 (on/off), but sometimes we need more than two states. Each state has a restTime, expressed
in the number of seconds. During rest time, the trigger is locked and its state cannot be switched until
rest time is over. This is useful for tasks that take time, such as opening an electrical door. Each state
has an array of TriggerMessage, the class which is going to be used to specify what happens at every
state change. Each one of these messages has a name and a receiver, to which the message is going to
be sent. The receiver can be any game object in the scene, and it must have a script that receives the
message. In other words, at least one script attached to the receiver must have a function that has the
same name of the message.

Back to SwitchableTrigget, this script has a number of interesting variables. First variable is an array of
states (called states). Each time the user activates the trigger, it tries to switch to the next state in the
array, and if is already in the last state, it goes back to the first state. Second variable is a public index to
specify the currently active state. This index refers to one of the states in states array, and is increased
at each switching. Finally, we have the variable activationDistance, to specify the minimum distance
between the trigger and the player that allows the player to use it. In addition to these public variables,
lastSwitchTime stores the last time this trigger has been used, to be able to lock the trigger for the rest
time of the current state.

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://bookboon.com/
http://bookboon.com/count/advert/bb104666-5119-403f-91c4-a3e7010cbfdf

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

116

Basic Game Logic

SwitchState() function is called whenever the player tries to use the trigger. It returns true if the state has
been successfully switched, or false otherwise. One reason that leads to unsuccessful switching attempt
is that the rest time of the current state has not yet passed. If it is possible to switch the state, the value
of currentState is incremented by 1, or set back to zero if the current state is the last one in states array.
After setting the new state, the trigger iterates over all TriggerMessage values stored in the list of messages
of the new state, and sends each message once to the specified receiver (lines 51 through 59). The last
step before returning true is to record the current time as lastSwitchTime, to be able to compute the rest
time of the current state. Illustration 39 shows the mechanism of manipulating multiple objects through
multiple states of a single trigger.

Illustration 39: Triggering mechanism: when the state changes, the new state sends all messages stored in
messagesToSend array

The idea will be more clear when we discuss the examples. The first example is a switch that controls
an electrical light. The switch as well as the light has two states: on and off. When the player switches
the trigger, two things happen: the light is changed from on to off or vice-versa, and the switch button
is moved upwards or downwards. This means that we have two states for the switch trigger, and each
state has two messages to send: one message to the light, and another message to the switch object. Next
step is to write two scrips that are capable of receiving the messages and performing actions based on
them. The first script is LightControl shown in Listing 36. This script can receive two messages: SwitchOn
and SwitchOff.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

117

Basic Game Logic

1. using UnityEngine;

2. using System.Collections;

3.

4. public class LightControl : MonoBehaviour {

5.

6. //The light we are going to control

7. Light toControl;

8.

9. void Start () {

10.	 toControl	=	GetComponent<Light>();
11. }

12.

13. void Update () {

14.

15. }

16.

17.	 //Receives	"SwitchOn"	message
18.	 public	void	SwitchOn(){
19.	 toControl.enabled	=	true;
20. }

21.

22.	 //Receives	"SwitchOff"	message
23.	 public	void	SwitchOff(){
24.	 toControl.enabled	=	false;
25. }

26. }

Listing 36: The script that controls the light based on received messages

This script must be attached to a light object, and it starts by finding the light component and storing
it in toControl. When it receives SwitchOn message, it executes SwitchOn() function and enables the
attached light component. The opposite happens when it receives SwitchOff message, by disabling the
controlled light component. The other script that receives messages is ZFlipper. This script rotates the
object to which it is attached 180 degrees around object’s local z axis. This rotation is performed when
the message Flip is received. But why we are going to use this script? Illustration 40 shows the object we
are going to use as switch. It is clear that when this object is rotated 180 degrees around its local z axis,
the texture flips upside down, resulting in an effect similar to switch movement.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

118

Basic Game Logic

Illustration 40: Power switch object

ZFlipper script is shown in Listing 37.

1. using UnityEngine;

2. using System.Collections;

3.

4. public class ZFlipper : MonoBehaviour {

5.

6. void Start () {

7.

8. }

9.

10. void Update () {

11.

12. }

13. //Rotates 180 degree around local z axis

14. public void Flip(){

15. transform.Rotate(0, 0, 180);

16. }

17. }

Listing 37: A simple script to flip switch object

The function Flip() is executed when the message Flip is received. Now we have the trigger that is capable
of sending messages and usable objects that can receive messages. We need to attach SwitcahbleTrigger
script to the switch object and set the appropriate number of states and messages per state. Illustration
41 shows this script in the inspector after preparing it for use.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

119

Basic Game Logic

Illustration 41: Light switch trigger completely configured

Illustration 41 shows that the trigger has two states. The first state sends two messages when activated:
SwitchOn message to ControllableLight, and Flip message to LightSwitch. ControllableLight is the light
game object that has the script LightControl, and LightControl is the switch object itself. This means that
the trigger sends Flip message to itself. The second state also sends two messages when activated. The
difference is the message it sends to the light, which is SwitchOff this time. At the beginning, the light
is switched on, therefore we set currentState to 0, which is the first state. To complete the functionality,
we add TriggerSwitcher script to the cylinder that represents the player. This script reads E key from the
keyboard and activates any switchable trigger nearby. This script is shown in Listing 38.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

120

Basic Game Logic

1. using UnityEngine;

2. using System.Collections;

3.

4. public class TriggerSwitcher : MonoBehaviour {

5.

6. void Start () {

7.

8. }

9.

10. void Update () {

11. if(Input.GetKeyDown(KeyCode.E)){

12. //Find all switchable triggers in the scene

13.	 SwitchableTrigger[]	allST	=
14.	 		 FindObjectsOfType<SwitchableTrigger>();
15.

16. //search for suitable trigger

17.	 //Suitable	=	near	+	facing
18. foreach(SwitchableTrigger st in allST){

19.	 		 float	dist	=
20. Vector3.Distance(transform.position,

21. st.transform.position);

22.

23. //If distance less than activationDistance,

24. //of the trigger, then it is close.

25. if(dist < st.activationDistance){

26.	 		 	 Vector3	distVector	=
27. st.transform.position

28. - transform.position;

29.

30.	 		 	 float	angle	=
31. Vector3.Angle(distVector,

32. transform.forward);

33. //If angle < 90, it is facing

34. if(angle < 90){

35.	 		 	 	 //facing	trigger	=	we	can	use	it
36. st.SwitchState();

37. }

38. }

39. }

40. }

41. }

42. }

Listing 38: The script that allows the player to use switchable triggers

When the player presses E key, the script searches for all switchable triggers in the scene, and finds the
distance between the player and each one. If the distance is less than activation distance set in the trigger,
and the player is facing the trigger with an angle less than 90, SwitchState() function of the trigger is
called. After adding TriggerSwitcher script to the cylinder, light switching functionality becomes ready,
so you can test it. You can also see the result int scene12 in the accompanying project.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

121

Basic Game Logic

To solidify the idea, I am going to illustrate a second example with multiple states. Recall the scene in
Illustration 38, there is a fan on the wall and a switch standing in the middle of the room. This switch
is going to be used to turn the fan on and change its speed. Let’s begin with the script of the fan which
is ControllableFan shown in Listing. This script sets 3 different speeds for the fan, as well as off state.

1. using UnityEngine;

2. using System.Collections;

3.

4. public class ControllableFan : MonoBehaviour {

5.

6.	 public	float	speed1	=	20;
7.	 public	float	speed2	=	40;
8.	 public	float	speed3	=	60;
9.

10.	 float	currentSpeed	=	0;
11.

12. void Start () {

13.

14. }

15.

16. void Update () {

17. transform.Rotate(0, currentSpeed * Time.deltaTime, 0);

18. }

19.

20. public void SetSpeed1(){

21.	 currentSpeed	=	speed1;
22. }

23.

24. public void SetSpeed2(){

25.	 currentSpeed	=	speed2;
26. }

27.

28. public void SetSpeed3(){

29.	 currentSpeed	=	speed3;
30. }

31.

32.	 public	void	SwitchOff(){
33.	 currentSpeed	=	0;
34. }

35. }

Listing 39: Fan script

The script has three functions that change the value of currentSpeed, which is the variable that directly
affects the rotation speed of the fan. Additionally, the script has SwitchOff() function which sets the speed
to zero, hence stops the rotation. To control the fan, we attach SwitchableTrigger script to the switch in
the middle of the room. We need to setup the script as in Illustration 42.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

122

Basic Game Logic

Illustration 42: Configured switchable trigger for the fan switch

This time we have four different states for the switch. The first three states send messages that change
fan speed, while the fourth one switches the fan off. Since the fan is off at the beginning of the game,
the current state is set to 3, which is the index of the off state in the switch. If the player switches this
trigger, the state switches to the first, and sends SetSpeed1() message to the fan object. You can see the
final result in scene12 in the accompanying project.

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

123

Basic Game Logic

Exercises

1. Change the hit animation in Target script (Listing 15 in page 63) so that the target the bullet
hits moves fast to the front instead of rotation.

2. Change TargetFollower script (Listing 20 in page 69) so that it locks the rocket on the farthest
target from the shuttle instead of the nearest.

3. Add a new feature to ShuttleControl script (Listing 21 in page 70) to allow the player to rotate
the shuttle using horizontal mouse movement. You must read the displacement of the mouse
pointer and rotate the shuttle around the y axis.

4. Attach the script BulletShooter (Listing 22 in page 71) to the target prefab to make the targets
able to shoot bullets on the shuttle. You have to add a new script that checks for collision
between the bullet and the shuttle. Therefore you are going to need a new bullet prefab. Finally,
you have to make sure that all targets look backwards (i.e. positive direction of their z axes
point towards the shuttle).

5. Add a third type of collectables to our ball example in section 3.2, which has a limited time
effect on the collector. This effect is doubling the value of the collected coins during the effect
period, so if the collector collects this Doubler, and then collects a coin with value 1, then the
variable money in InventoryBox must be increased by 2. You can select the ball object from the
hierarchy during play, in order to be able to observe the value of money all the time.

6. Make a switchable trigger that cycles the color of a light between three values: red, yellow, and
green. You can refer to triggers in scene12 in the accompanying project to understand the idea.

http://bookboon.com/

